If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-8x-105=0
a = 8; b = -8; c = -105;
Δ = b2-4ac
Δ = -82-4·8·(-105)
Δ = 3424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3424}=\sqrt{16*214}=\sqrt{16}*\sqrt{214}=4\sqrt{214}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{214}}{2*8}=\frac{8-4\sqrt{214}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{214}}{2*8}=\frac{8+4\sqrt{214}}{16} $
| 4/15=6k | | 12+3x=8x | | x=1089 | | 4/5=3/6k | | 4x^2-28x+3=0 | | 29-6x=4x | | 8(x+16)-15=49 | | 5(x-14)-7=-57 | | 7(x+5)+7=-14 | | 8(x+11)-19=53 | | 9x+1+28x-2=33 | | 8(x+10)+20=84 | | 6(x+4)+16=-14 | | 4x-25=21 | | 3(x+11)+18=39 | | 3+x=131 | | 5(x+11)=5 | | 8(x+16)+10=162 | | 3(x-13)-15=-33 | | 7(x+13)=28 | | 7(x+17)=84 | | 2(x+5)+7=13 | | 9x^2-81=9 | | 7(x+11)=140 | | 0.25x+8=16 | | 3x+159=180 | | 9x-3/5=-6/5 | | 7/2x=42;12 | | (6x+33)=315 | | 3/2x-5/2=2x | | (6x+33)=28 | | 5(x-5)=4(x-6) |